Abstract
Critical Care Science. 08-26-2024;36:e20240150en
DOI 10.62675/2965-2774.20240150-en
In recent decades, several databases of critically ill patients have become available in both low-, middle-, and high-income countries from all continents. These databases are also rich sources of data for the surveillance of emerging diseases, intensive care unit performance evaluation and benchmarking, quality improvement projects and clinical research. The Epimed Monitor database is turning 15 years old in 2024 and has become one of the largest of these databases. In recent years, there has been rapid geographical expansion, an increase in the number of participating intensive care units and hospitals, and the addition of several new variables and scores, allowing a more complete characterization of patients to facilitate multicenter clinical studies. As of December 2023, the database was being used regularly for 23,852 beds in 1,723 intensive care units and 763 hospitals from ten countries, totaling more than 5.6 million admissions. In addition, critical care societies have adopted the system and its database to establish national registries and international collaborations. In the present review, we provide an updated description of the database; report experiences of its use in critical care for quality improvement initiatives, national registries and clinical research; and explore other potential future perspectives and developments.
Abstract
Critical Care Science. 01-17-2024;35(4):345-354
DOI 10.5935/2965-2774.20230162-en
The optimal target for blood glucose concentration in critically ill patients is unclear. We will perform a systematic review and meta-analysis with aggregated and individual patient data from randomized controlled trials, comparing intensive glucose control with liberal glucose control in critically ill adults.
MEDLINE®, Embase, the Cochrane Central Register of Clinical Trials, and clinical trials registries (World Health Organization, clinical trials.gov). The authors of eligible trials will be invited to provide individual patient data. Published trial-level data from eligible trials that are not at high risk of bias will be included in an aggregated data meta-analysis if individual patient data are not available.
Inclusion criteria: randomized controlled trials that recruited adult patients, targeting a blood glucose of ≤ 120mg/dL (≤ 6.6mmol/L) compared to a higher blood glucose concentration target using intravenous insulin in both groups. Excluded studies: those with an upper limit blood glucose target in the intervention group of > 120mg/dL (> 6.6mmol/L), or where intensive glucose control was only performed in the intraoperative period, and those where loss to follow-up exceeded 10% by hospital discharge.
In-hospital mortality during index hospital admission. Secondary endpoints: mortality and survival at other timepoints, duration of invasive mechanical ventilation, vasoactive agents, and renal replacement therapy. A random effect Bayesian meta-analysis and hierarchical Bayesian models for individual patient data will be used.
This systematic review with aggregate and individual patient data will address the clinical question, ‘what is the best blood glucose target for critically ill patients overall?’