metabolic acidosis Archives - Critical Care Science (CCS)

  • Artigos originais

    Assessment of metabolic acidosis in critically ill patients: method of Stewart-Fencl-Figge versus the traditional henderson-hasselbalch approach

    Rev Bras Ter Intensiva. 2006;18(4):380-384

    Abstract

    Artigos originais

    Assessment of metabolic acidosis in critically ill patients: method of Stewart-Fencl-Figge versus the traditional henderson-hasselbalch approach

    Rev Bras Ter Intensiva. 2006;18(4):380-384

    DOI 10.1590/S0103-507X2006000400010

    Views0

    BACKGROUND AND OBJECTIVES: To review strategies of assessment of metabolic acidosis giving emphasis to the of Stewart-Fencl-Figge method versus the traditional method of Henderson-Hasselbalch. CONTENTS: Metabolic acidosis is a common issue in critically ill patients, an important cause of myocardial contractility depression and sensible marker of impaired tissue oxygenation. Traditionally, is evaluated by the Henderson-Hasselbalch approach in which an arterial blood sample provides information about the presence and type of acid base disturbance. However, this method is not always capable to explain the causes of the metabolic acidosis and, therefore, several studies have explored mechanisms to improve its interpretation. The Stewart-Fencl-Figge method calculated through a mathematical formula, where in addition to arterial blood gas levels, serum levels of electrolytes, lactate and albumin are used, supplies trustworthy information allowing detection of mixed metabolic abnormalities and quantification of the magnitude of each component, mainly in patients with multiple organic dysfunctions. In these individuals, the presence of unmeasured anions in the plasma is an important mechanism of metabolic acidosis and its early detection fundamental to avoid deleterious effect on the organism. CONCLUSIONS: The traditional Henderson-Hasselbalch approach fails in analyzing the underlying mechanisms of metabolic acidosis and possesses many variables that intervene with its result especially in the critically ill patient. The Stewart-Fencl-Figge method offers a broader analysis of metabolic acidosis, indicating its mechanisms and guiding a better therapeutically strategy. As an alternative, the albumin-corrected and lactate-corrected anion gap seems to be as useful as the Stewart approach in identifying the unmeasured anions.

    See more
    Assessment of metabolic acidosis in critically ill patients: method of Stewart-Fencl-Figge versus the traditional henderson-hasselbalch approach
  • Partitioning evolutive standard base excess determinants in septic shock patients

    Rev Bras Ter Intensiva. 2007;19(4):437-443

    Abstract

    Partitioning evolutive standard base excess determinants in septic shock patients

    Rev Bras Ter Intensiva. 2007;19(4):437-443

    DOI 10.1590/S0103-507X2007000400006

    Views0

    BACKGROUND AND OBJECTIVES: The amount of metabolic acidosis measured through the standard base excess (SBE) has been shown to be an outcome marker and its improvement has been associated with better survival. We studied the mechanism of standard base excess variation in the first three days of intensive care unit (ICU) stay through the evaluation of independent variables of physico-chemical approach. METHODS: Data were retrieved from our prospective collected data base from patients with diagnosis of septic shock, daily up to the third day after the ICU admission. Single correlations between SBE and independent variables were performed as well as a mathematical multilinear model was built to disclose the SBE variation determinants. RESULTS: We have shown that in septic shock patients the standard base excess variation during the first three days of ICU stay is weakly correlated to strong ion gap (SIG), lactate, creatinin and PaCO2 when individually analyzed. Analyzing concomitantly those independent variables, we built a mathematical model with a stepwise multilinear regression composed by apparent strong ion difference (SIDa), SIG, PaCO2, albumin and diuresis that resulted in a R² coefficient of 0.866 to determine SBE variation. CONCLUSIONS: Variations of metabolic acidosis measured through the standard base excess in septic shock patients when analyzed until the third day after intensive care unit admission, is resultant of interaction of several independent determinants as PaCO2, diuresis, SIG, SIDa and albumin.

    See more
    Partitioning evolutive standard base excess determinants in septic shock patients

Search

Search in:

Article type
article-commentary
brief-report
case-report
correction
editorial
editorial
letter
letter
other
rapid-communication
reply
research-article
research-article
review-article
Session
Articles
Artigo de Revisão de Pediatria
Artigo Original
Artigo Original de Pediatria
Artigo Original Destaque
Artigos de Revisão
Artigos originais
Author's Response
Brief Communication
Case Report
Case Reports
Clinical Report
Comentários
Commentaries
Commentary
Consenso Brasileiro de Monitorização e Suporte Hemodinâmico
Correspondence
Editoriais
Editorial
Editorials
Erratum
Letter to the Editor
Letters to the Editor
Original Article
Original Article - Basic Research
Original Article - Neonatologia
Original Articles
Original Articles - Basic Research
Original Articles - Clinical Research
Relato de Caso
Relatos de Caso
Research Letter
Review
Review Article
Special Article
Special Articles
Viewpoint
Year / Volume
2024; v.36
2023; v.35
2022; v.34
2021; v.33
2020; v.32
2019; v.31
2018; v.30
2017; v.29
2016; v.28
2015; v.27
2014; v.26
2013; v.25
2012; v.24
2011; v.23
2010; v.22
2009; v.21
2008; v.20
2007; v.19
2006; v.18
ISSUE