
Critical Care Science
https://doi.org/10.62675/2965-2774.20240285-en

Crit Care Sci. 2024;36:e20240285en

Generalizing the application of machine learning predictive models across different 
populations: does a model to predict the use of renal replacement therapy in critically 
ill COVID-19 patients apply to general intensive care unit patients?

Allan Rodrigo Murrieta França1 , Julia Nunes Cantarino2, Jorge Ibrain Figueira Salluh3 , Leonardo dos Santos Lourenço Bastos2

1 Postgraduate Program of Internal Medicine, Universidade Federal do Rio de Janeiro -  Rio de Janeiro (RJ), Brazil.
2 Department of Industrial Engineering, Pontifícia Universidade Católica do Rio de Janeiro - Rio de Janeiro (RJ), Brazil.
3 Postgraduate Program, Instituto D’Or de Pesquisa e Ensino - Rio de Janeiro (RJ), Brazil.

TO THE EDITOR

The widespread use of machine learning has created the possibility of generating robust prediction models for 
individual patients; however, caution is needed in their use for heterogeneous critically ill populations.(1) Recent literature 
has demonstrated major advances in the field of acute kidney injury prediction and the need for renal replacement 
therapy (RRT).(2) In a large multicenter cohort, we evaluated how a previously published model(3) that predicts the 
need for RRT in coronavirus disease 2019 (COVID-19) intensive care unit (ICU) patients would perform in a general  
ICU patient.

Recently, using a data-driven methodology in a multicenter cohort of 14,374 critically ill COVID-19 
patients, we developed and validated a machine learning prediction model to predict the use of RRT (the  
“COVID-19-RRT Model”).(3) In the present study, we performed an external validation of the “COVID-19-RRT  
Model” in a cohort of non-COVID-19 adult patients admitted to 126 ICUs in 2022 in a Brazilian private 
hospital network. The data were acquired using a solution used for quality assessment (Epimed Monitor).(4) 
The study was approved by the Institutional Review Board after providing informed consent (Instituto D’Or 
de Pesquisa e Ensino [IDOR], CAAE:17079119.7.0000.5249). The prediction performance was evaluated 
in terms of calibration (plots and Brier’s score) and discrimination (area under the ROC curve [AU-ROC]).  
A description of the materials and methods used are provided in the Supplementary Material (Table 1S, 2S and  
Figure 1S).

In 2022, 8,735 adult ICU patients without COVID-19 needed early respiratory support. Of these, 770 (8.8%) 
patients underwent RRT, a lower percentage than that in the development cohort (12%) (Table 1). Patients in the 
non-COVID-19 external validation cohort were older (median age 72 versus 56 years), more frequently female (54% 
versus 36%) and more frequently frail (43% versus 16%) than were those in the model development cohort. The 
median ICU stay was shorter (6 versus 10 days), and ICU mortality was lower compared to the development group 
(18% versus 22%). In the non-COVID-19 cohort, the model’s AUC-ROC curve was 0.82 (95% confidence interval 
[95%CI]: 0.80 - 0.83), which was greater than that in the internal validation cohort (0.79; 95%CI: 0.78 - 0.82). 
Brier’s score was comparable between the external validation dataset and the interval validation dataset; however, 
the calibration plots showed an overestimation of the predicted RRT probabilities, especially for patients at low risk  
(Figure 1).

Despite the good discrimination, the COVID-19-RRT Model overestimated the probability of needing RRT, 
especially in the “low-risk” strata.(5) This may be explained by differences in the baseline severity of illness between 
COVID-19 patients and general ICU patients: the former had a lower severity at baseline, but the proportion of RRT 
use was greater than that in general ICU patients. Otherwise, a general ICU patient with a low disease severity at baseline 
will seldom require RRT. Therefore, despite good general performance, this model has limited clinical use for a mixed 
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Table 1 - Clinical characteristics and outcomes of critically ill general intensive care unit patients who needed respiratory support (within the 
first 24 hours after admission) and who received renal replacement therapy

Characteristic n
Overall

n = 8,735
Non-RRT
n = 7,965

RRT
n = 770

Age 8,735 72 (56 - 84) 72 (56 - 84) 71 (59 - 82)

Gender 8,735

Female 4,680 (54) 4,331 (54) 349 (45)

Male 4,055 (46) 3,634 (46) 421 (55)

Charlson Comorbidity Index 8,659 1.00 (0.00 - 3.00) 1.00 (0.00 - 3.00) 3.00 (1.00 - 4.00)

Modified Frailty Index 8,735 2.00 (1.00 - 3.00) 2.00 (1.00 - 3.00) 2.00 (1.00 - 4.00)

Modified Frailty Index level 8,735

Frail 3,491 (40) 3,119 (39) 372 (48)

Nonfrail 1,508 (17) 1,435 (18) 73 (9.5)

Prefrail 3,736 (43) 3,411 (43) 325 (42)

Admission source 8,735

Emergency room 5,429 (62) 4,936 (62) 493 (64)

Other unit at your hospital 743 (8.5) 631 (7.9) 112 (15)

Outros 1,714 (20) 1,632 (20) 82 (11)

Transfer from other hospital 324 (3.7) 283 (3.6) 41 (5.3)

Ward/Floor 525 (6.0) 483 (6.1) 42 (5.5)

SAPS-3 8,735 54 (44 - 65) 54 (43 - 64) 65 (55 - 78)

SOFA score 6,823 2.0 (1.0 - 5.0) 2.0 (1.0 - 5.0) 7.0 (4.0 - 11.0)

Comorbidities 8,735

Hypertension 8,735 5,364 (61) 4,805 (60) 559 (73)

Diabetes 8,735 2,909 (33) 2,584 (32) 325 (42)

Obesity 8,735 508 (5.8) 468 (5.9) 40 (5.2)

Immunosuppression 8,735 2,011 (23) 1,810 (23) 201 (26)

Cardiovascular disease 8,735 2,998 (34) 2,661 (33) 337 (44)

COPD or Asthma 8,735 1,510 (17) 1,385 (17) 125 (16)

Malignancy 8,735 1,741 (20) 1,563 (20) 178 (23)

Cerebrovascular disease 8,735 1,651 (19) 1,547 (19) 104 (14)

Chronic Kidney disease 8,735 1,021 (12) 749 (9.4) 272 (35)

Tobacco history 8,735 606 (6.9) 558 (7.0) 48 (6.2)

Liver cirrhosis 8,735 197 (2.3) 158 (2.0) 39 (5.1)

Other comorbidities 8,735 3,616 (41) 3,247 (41) 369 (48)

Physiology findings within the first hour

Lowest Glasgow Coma Scale (1 hour) 8,735 15.0 (11.0 - 15.0) 15.0 (12.0 - 15.0) 14.0 (6.0 - 15.0)

Lowest platelets count (1 hour) 8,735 214 (161 - 274) 215 (163 - 275) 192 (130 - 263)

Urea 8,735 44 (31 - 67) 42 (30 - 63) 75 (47 - 112)

BUN 8,735 21 (14 - 31) 20 (14 - 29) 35 (22 - 52)

Highest creatinine (1 hour) 8,735 0.94 (0.70 -1.36) 0.90 (0.70 -1.27) 1.80 (1.10 - 3.20)

Support at admission (1 hour)

Noninvasive ventilation 8,735 4,867 (56) 4,575 (57) 292 (38)
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ICU population. Our study supports the need for models 
with better generalizability for the prediction of RRT and 
acute kidney injury in mixed ICU populations. Moreover, 

these findings should be interpreted with caution when 
translating the use of models developed for a specific 
population to a general group of critically ill patients.

Figure 1 - External validation results of calibration and discrimination for the final model.
The external validation dataset included 8,735 patients with general intensive care unit admissions who needed respiratory support upon admission (1st hour), 770 of whom needed renal replacement 
therapy in 2022. (A) Discrimination was evaluated using receiver operating characteristic curves and area under the curve curves. (B) The calibration belt evaluates the concordance between predicted 
and observed values: shaded areas represent the confidence bands (belt) of 80% and 95%, and the red line is the bisector line (observed = predicted). When the confidence bands significantly deviate 
from the bisector line, the corresponding quantiles of under- or overestimation are displayed in the lower right part of the plots. The p value represents a statistical test for the null hypothesis of calibration.
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Characteristic n
Overall

n = 8,735
Non-RRT
n = 7,965

RRT
n = 770

Mechanical ventilation 8,735 2,300 (26) 1,981 (25) 319 (41)

Vasopressor 8,735 2,099 (24) 1,747 (22) 352 (46)

Support during hospitalization

Noninvasive ventilation support 8,735 6,385 (73) 5,941 (75) 444 (58)

High-flow nasal cannula 8,735 247 (2.8) 212 (2.7) 35 (4.5)

Mechanical ventilation 8,735 3,130 (36) 2,582 (32) 548 (71)

Days on mechanical ventilation 3,130 4 (1 - 12) 3 (1 - 10) 9 (3 - 18)

ECMO 8,735 25 (0.3) 8 (0.1) 17 (2.2)

Vasopressors 8,735 3,213 (37) 2,625 (33) 588 (76)

Outcomes

ICU mortality 8,735 1,607 (18) 1,244 (16) 363 (47)

In-hospital mortality 8,735 2,064 (24) 1,623 (20) 441 (57)

ICU length of stay 8,735 6 (3 - 13) 6 (3 - 11) 14 (6 - 29)

Hospital length of stay 8,735 10 (5 - 20) 10 (5 - 19) 18 (8 - 38)

RRT - renal replacement therapy; SAPS-3 - Simplified Acute Physiology Score 3; SOFA - Sequential Organ Failure Assessment; COPD - chronic obstructive pulmonary disease; BUN - blood urea nitrogen; 
ECMO - extracorporeal membrane oxygenation; ICU - intensive care unit. The results are expressed as medians (interquartile ranges) or n (%).
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