You searched for:"Luis Felipe Reyes"
We found (3) results for your search.Abstract
Critical Care Science. 2024;36:e20240044en
07-24-2024
DOI 10.62675/2965-2774.20240044-en
Patients with acute respiratory failure often require mechanical ventilation to reduce the work of breathing and improve gas exchange; however, this may exacerbate lung injury. Protective ventilation strategies, characterized by low tidal volumes (≤ 8mL/kg of predicted body weight) and limited plateau pressure below 30cmH2O, have shown improved outcomes in patients with acute respiratory distress syndrome. However, in the transition to spontaneous ventilation, it can be challenging to maintain tidal volume within protective levels, and it is unclear whether low tidal volumes during spontaneous ventilation impact patient outcomes. We developed a study protocol to estimate the prevalence of low tidal volume ventilation in the first 24 hours of spontaneous ventilation in patients with hypoxemic acute respiratory failure and its association with ventilator-free days and survival.
We designed a multicenter, multinational, cohort study with a 28-day follow-up that will include patients with acute respiratory failure, defined as a partial oxygen pressure/fraction of inspired oxygen ratio < 300mmHg, in transition to spontaneous ventilation in intensive care units in Latin America.
We plan to include 422 patients in ten countries. The primary outcomes are the prevalence of low tidal volume in the first 24 hours of spontaneous ventilation and ventilator-free days on day 28. The secondary outcomes are intensive care unit and hospital mortality, incidence of asynchrony and return to controlled ventilation and sedation.
In this study, we will assess the prevalence of low tidal volume during spontaneous ventilation and its association with clinical outcomes, which can inform clinical practice and future clinical trials.
Abstract
Revista Brasileira de Terapia Intensiva. 2022;34(3):360-366
09-19-2022
DOI 10.5935/0103-507X.20220477-en
To investigate the applicability of the Respiratory Rate-Oxygenation Index to identify the risk of high-flow nasal cannula failure in post-extubation pneumonia patients.
This was a 2-year retrospective observational study conducted in a reference hospital in Bogotá, Colombia. All patients in whom post-extubation high-flow nasal cannula therapy was used as a bridge to extubation were included in the study. The Respiratory Rate-Oxygenation Index was calculated to assess the risk of post-extubation high-flow nasal cannula failure.
A total of 162 patients were included in the study. Of these, 23.5% developed high-flow nasal cannula failure. The Respiratory Rate-Oxygenation Index was significantly lower in patients who had high-flow nasal cannula failure [median (IQR): 10.0 (7.7 - 14.4) versus 12.6 (10.1 - 15.6); p = 0.006]. Respiratory Rate-Oxygenation Index > 4.88 showed a crude OR of 0.23 (95%CI 0.17 - 0.30) and an adjusted OR of 0.89 (95%CI 0.81 - 0.98) stratified by severity and comorbidity. After logistic regression analysis, the Respiratory Rate-Oxygenation Index had an adjusted OR of 0.90 (95%CI 0.82 - 0.98; p = 0.026). The area under the Receiver Operating Characteristic curve for extubation failure was 0.64 (95%CI 0.53 - 0.75; p = 0.06). The Respiratory Rate-Oxygenation Index did not show differences between patients who survived and those who died during the intensive care unit stay.
The Respiratory Rate-Oxygenation Index is an accessible tool to identify patients at risk of failing high-flow nasal cannula post-extubation treatment. Prospective studies are needed to broaden the utility in this scenario.