You searched for:"Alejandro Bruhn"
We found (8) results for your search.Abstract
Critical Care Science. 01-17-2025;37:e20250305
DOI 10.62675/2965-2774.20250305
Abstract
Critical Care Science. 11-18-2024;36:e20240251eden
DOI 10.62675/2965-2774.20240251ed-en
Abstract
Critical Care Science. 07-24-2024;36:e20240044en
DOI 10.62675/2965-2774.20240044-en
Patients with acute respiratory failure often require mechanical ventilation to reduce the work of breathing and improve gas exchange; however, this may exacerbate lung injury. Protective ventilation strategies, characterized by low tidal volumes (≤ 8mL/kg of predicted body weight) and limited plateau pressure below 30cmH2O, have shown improved outcomes in patients with acute respiratory distress syndrome. However, in the transition to spontaneous ventilation, it can be challenging to maintain tidal volume within protective levels, and it is unclear whether low tidal volumes during spontaneous ventilation impact patient outcomes. We developed a study protocol to estimate the prevalence of low tidal volume ventilation in the first 24 hours of spontaneous ventilation in patients with hypoxemic acute respiratory failure and its association with ventilator-free days and survival.
We designed a multicenter, multinational, cohort study with a 28-day follow-up that will include patients with acute respiratory failure, defined as a partial oxygen pressure/fraction of inspired oxygen ratio < 300mmHg, in transition to spontaneous ventilation in intensive care units in Latin America.
We plan to include 422 patients in ten countries. The primary outcomes are the prevalence of low tidal volume in the first 24 hours of spontaneous ventilation and ventilator-free days on day 28. The secondary outcomes are intensive care unit and hospital mortality, incidence of asynchrony and return to controlled ventilation and sedation.
In this study, we will assess the prevalence of low tidal volume during spontaneous ventilation and its association with clinical outcomes, which can inform clinical practice and future clinical trials.
Abstract
Critical Care Science. 04-22-2024;36:e20240088en
DOI 10.62675/2965-2774.20240088-en
Abstract
Revista Brasileira de Terapia Intensiva. 06-24-2022;34(1):176-184
DOI 10.5935/0103-507X.20220012-en
Defective management of secretions is one of the most frequent complications in invasive mechanically ventilated patients. Clearance of secretions through chest physiotherapy is a critical aspect of the treatment of these patients. Manual rib cage compression is one of the most practiced chest physiotherapy techniques in ventilated patients; however, its impact on clinical outcomes remains controversial due to methodological issues and poor understanding of its action. In this review, we present a detailed analysis of the physical principles involved in rib cage compression technique performance, as well as the physiological effects observed in experimental and clinical studies, which show that the use of brief and vigorous rib cage compression, based on increased expiratory flows (expiratory-inspiratory airflow difference of > 33L/minute), can improve mucus movement toward the glottis. On the other hand, the use of soft and gradual rib cage compression throughout the whole expiratory phase does not impact the expiratory flows, resulting in ineffective or undesired effects in some cases. More physiological studies are needed to understand the principles of the rib cage compression technique in ventilated humans. However, according to the evidence, rib cage compression has more potential benefits than risks, so its implementation should be promoted.
Abstract
Revista Brasileira de Terapia Intensiva. 01-01-2017;29(2):231-237
DOI 10.5935/0103-507X.20170032
Overdistention and intratidal alveolar recruitment have been advocated as the main physical mechanisms responsible for ventilator-induced lung injury. Limiting tidal volume has a demonstrated survival benefit in patients with acute respiratory distress syndrome and is recognized as the cornerstone of protective ventilation. In contrast, the use of high positive end-expiratory pressure levels in clinical trials has yielded conflicting results and remains controversial. In the present review, we will discuss the benefits and limitations of the open lung approach and will discuss some recent experimental and clinical trials on the use of high versus low/moderate positive end-expiratory pressure levels. We will also distinguish dynamic (tidal volume) from static strain (positive end-expiratory pressure and mean airway pressure) and will discuss their roles in inducing ventilator-induced lung injury. High positive end-expiratory pressure strategies clearly decrease refractory hypoxemia in patients with acute respiratory distress syndrome, but they also increase static strain, which in turn may harm patients, especially those with lower levels of lung recruitability. In patients with severe respiratory failure, titrating positive end-expiratory pressure against the severity of hypoxemia, or providing it in a decremental fashion after a recruitment maneuver, is recommended. If high plateau, driving or mean airway pressures are observed, prone positioning or ultraprotective ventilation may be indicated to improve oxygenation without additional stress and strain in the lung.
Abstract
Revista Brasileira de Terapia Intensiva. 01-01-2016;28(2):190-194
DOI 10.5935/0103-507X.20160032
Hantavirus cardiopulmonary syndrome has a high mortality rate, and early connection to extracorporeal membrane oxygenation has been suggested to improve outcomes. We report the case of a patient with demonstrated Hantavirus cardiopulmonary syndrome and refractory shock who fulfilled the criteria for extracorporeal membrane oxygenation and responded successfully to high volume continuous hemofiltration. The implementation of high volume continuous hemofiltration along with protective ventilation reversed the shock within a few hours and may have prompted recovery. In patients with Hantavirus cardiopulmonary syndrome, a short course of high volume continuous hemofiltration may help differentiate patients who can be treated with conventional intensive care unit management from those who will require more complex therapies, such as extracorporeal membrane oxygenation.
Abstract
Revista Brasileira de Terapia Intensiva. 04-24-2012;24(1):43-51
DOI 10.1590/S0103-507X2012000100007
OBJECTIVE: The objective of this study was to assess the effects of positive end-expiratory pressure on recruitment, cyclic recruitment and derecruitment and strain in patients with acute lung injury and acute respiratory distress syndrome using lung computed tomography. METHODS: This is an open, controlled, non-randomized interventional study of ten patients with acute lung injury and acute respiratory distress syndrome. Using computed tomography, single, basal slices of the lung were obtained during inspiratory and expiratory pauses at a tidal volume of 6 ml/kg and a positive end-expiratory pressure of 5, 10, 15 and 20 cmH2O. The densities of the lung parenchyma were measured in Hounsfield units. The values for positive end-expiratory pressure-induced recruitment, cyclic recruitment and derecruitment and strain were then calculated. RESULTS: Increasing levels of positive end-expiratory pressure were correlated with increased recruitment and global strain (p < 0.01), which was significantly correlated with plateau pressure (r² = 0.97, p < 0.01). In addition, increasing levels of positive end-expiratory pressure systematically increased strain along the sternovertebral axis. CONCLUSION: While strain is an adverse effect of positive end-expiratory pressure, the decision use positive end-expiratory pressure with any patient should be balanced against the potential benefits of recruitment. Due to the small number of patients in this study, the present data should be treated as hypothesis generating and is not intended to limit the clinical application of a high level of positive end-expiratory pressure in patients with severe hypoxemia.